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A suitable extension of the Mori memory-function formalism to the non- 
Hermitian case allows a "multiplicative" process to be described by a Langevin 
equation of non-Markoffian nature. This generalized Langevin equation is then 
shown to provide for the variable of interest the same autocorrelation function 
as the well-known theoretical approach developed by Kubo, the stochastic 
Liouville equation (SLE) theory. It is shown, furthermore, that the present 
approach does not disregard the influence of the variable of interest on the time 
evolution of its thermal bath. The stochastic process under study can also be 
described by a Fokker-Planck-like equation, which results in a Gaussian equi- 
librium distribution for the variable of interest. The main flaw of the SLE 
theory, that resulting in an uncorrect equilibrium distribution, is therefore 
completely eliminated. 

KEY WORDS: Stochastic process of "multiplicative" type; stochastic 
Liouville equation; multidimensional Langevin equation; non-Markoffian 
Langevin equation; Fokker-Planck equation for non-Markoffian pro- 
cesses, 

1. INTRODUCTION 

The principal purpose of the present paper is to develop a new theoretical 
approach to the study of "multiplicative" stochastic processes such as 

du = iw( t )u  (1.1) 
dt 

This is the well-known stochastic oscillator studied by Kubo. ~1) The sto- 
chastic process described by Eq. (1.1) is termed "multiplicative" according 
to the nomenclature of Fox. (2'3) Within the context of the stochastic 
Liouville equation (SLE) theory, ~~ the motion of the variable co(t) is 
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thought of as independent of the variable u. Furthermore, this stochastic 
process is assumed to be both Markoffian and Gaussian. As a consequence, 
its correlation function is given by 

(ww(t)) = A2e -vt (1.2) 

These assumptions need not be regarded as being serious limitations. In 
fact, it has been shown ~4-6) that the SLE theory can even be extended to 
the case where w(t) is neither a Markoffian nor a Gaussian stochastic 
variable. As is well known, the main flaw of this theory depends on the fact 
that the motion of w(t) is assumed to be independent of that of u(t). As a 
consequence (see Appendix A) the correct equilibrium distribution of u is 
not obtained. Several attempts at correcting this flaw have been made. ~w9) 
Tokuyama and Mori ~7) developed a new approach to the subject of 
generalized Brownian motion which complements the well-known theory of 
the generalized Langevin equation given by Mori in two previous pa- 
pers. r176 Though, from a formal point of view, this theory should allow 
the back reaction of the variable of interest on its thermal bath to be taken 
into account, when actually dealing with the stochastic oscillator ~7) they 
made the same main assumption as Kubo did, ~1) i.e., that the stochastic 
process o~(t) is independent of u(t). 

Memoryless equations of the same kind as that found by Tokuyama 
and Mori have also been obtained by Hashitsume, Shibata, and Shing~ ~s) 
and Shibata, Takahashi, and Hashitsume. r Their approach, too, shares 
the main flaw of the SLE theory. 

In the present paper, we shall focus our attention on a Gaussian 
stochastic variable ~(t) which in the absence of the u-w coupling satisfies 
Eq. (1.2). Then we shall explicitly evaluate the motion of w(t) when this 
interaction is turned on. 

The theory developed in the present paper is based on an extension to 
the non-Hermitian case of the approach developed in previous pa- 
pers. ~4'5'12'13) In order to make this paper as much self-sufficient as possible, 
in the next section we shall summarize the main results of these papers. 

In Section 3 we shall point out that a multiplicafive form can straight- 
forwardly be obtained by expressing the equation of motion of the variable 
of interest in the interaction picture. We also shall show that a complete 
knowledge of the stochastic properties of the resulting mulfiplicative vari- 
able is tantamount to replacing the unperturbed Liouvillian concerning the 
thermal bath with a diffusion operator playing the role of effective Liou- 
villian. Since the new total Liouvillian is no longer Hermitian, a suitable 
generalization of the Mori approach ~ ]0,11) is required. 

In Section 4 we shall apply our approach to the special case of Kubo's 
stochastic oscillator. Concluding remarks can be found in Section 5. 
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2. THE CHAIN OF THE MORI VARIABLES AS A CONVENIENT 
BASIS SET FOR EXPANDING THE LIOUVILLE OPERATOR 

In a well-known paper, (1~ Mori showed that the equation of motion of 
a variable of interest, a, governed by the time-independent Liouville opera- 
tor L, 

da --~ (t) = iLa(t)  (2.1) 

can be transformed into an equation of Langevin type, 

( t ) -  i~a(t)  + ~ t ~ ( t -  s )a(s )ds= f ( t )  (2.2) 
dO 

where 

and 

iw =-- (iLa, a*).  (a, a*) - '  

~(t)  =-- ( f ( t ) ,  f*) . (a, a*) - '  

(2.3) 

(2.4) 

=- fo=e-Z'(L+l(t),L*,) " ( L , / *  ) - '  = 

4- 

A2 
n + l  

Z -- iw,+ 1 4- ~,+ 1(Z) 

(2.8) 

(2.9) 

f (  t) =-- e'QiLQiLa (2.5) 

Q is the projection operator onto the subspace orthogonal to a, defined as 
follows: 

Q - 1 - P (2.6) 

The operator P, in turn, is defined by 

Pg ~- ( g, a*) . (a, a*) - la (2.7) 

The previous results are based on the preliminary definition of a suitable 
scalar product (f, g*) for two arbitrary variables f and g. 

In a subsequent paper, (~1) Mori showed that the Laplace transform of 
the "memory kernel" ep(t) of Eq. (2.2) is given by the following infinite 
continued fraction: 

- = 

z - iwj + 
z -- i~ 2 4- 
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where 

A2 ~(f j '  fj* )" (fj--l' fj*--1) -1 (2.10) 

io~j =-(iLjfj, fa* ).  (fj, f~ )-~ (2.11) 

It is useful to recall that 

iw o =--- ioa (2.11') 

The new dynamical variables fj are generated by the recurrence equation 

fj =-- iLjf_,  ( j  = 1, 2 . . . . .  n) (2.12) 

fo ----- a (2.12') 

where (iL o =- iL) 
r ) 

iLj =--- Qr iL (2.13) 
\r=0 

Q~-= 1 - P~ (2.14) 

Cg=-(g ,  f7 )" ( f ,  f7 )-'f,. (2.14') 

Equation (2.5) provides a deterministic time evolution for the fluctuat- 
ing forcef(t). This deterministic time evolution depends on the dynamics of 
the space complementary to that of the variable a. When this subsystem is 
characterized by an overwhelming number of freedom degrees, it is usually 
assumed (3) that f ( t )  can be regarded as a stochastic force. As a conse- 
quence, Eq. (2.2) becomes a stochastic integrodifferential equation. 

As is well known, any computational problem resulting from the 
presence of the stochastic force can be avoided by substituting the corre- 
sponding Fokker-Planck equation for the Langevin equation. In the case 
of the generalized Langevin equation of Eq. (2.2), this replacement has 
been attempted by several authors. (14-L7) They found a time-convo- 
lutionless equation for the conditional probability, which in the Gaussian 
case assumes a form of Fokker-Planck type. Such an equation has been 
extended to dealing with the non-Gaussian (17'15) and nonlinear O7'18~ case. 
As pointed out by Fox (16) and H/inggi et al., (19) however, these equations 
are not bona fide Fokker-Planck equations, in that they do not provide a 
complete description of the stochastic process under study. 

According to Refs. 4, 5, 13, 20, by using the results of the Mori theory 
expressed by Eq. (2.8), a completely different approach, resulting in a bona 
fide Fokker-Planck equation, can be followed. In fact, in Appendix B it is 
shown that if ~n(z) is assumed to be independent of z, then Eq. (2.2) can be 
replaced by 

dU = r u  + F(t) (2.2') 
dt 
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where 

and 

F ~  

i~o &l 0 . . -  0 

- Al i ~ l  A2 " ' "  0 

0 - A2 iw2 " ' "  0 
. . . . . . . . . . . .  ~ n  

0 0 0 - A. i~n - G  

v.  - ~ . ( o )  

(2.2") 

(2.2"') 

I~ F(t)  -= ( 2 . f  v) r.i(t) 
U(t) is a multidimensional stochastic variable with components U0, 
U 1 . . . . .  U~. The first component Uo(t ) has to be identified with a ( t ) ,  Eq. 
(2.2). Only the last component directly undergoes a fluctuation-dissipation 
process expressed by 

( F , ( t ) , r * )  = 2 7 , 8 ( 0  (2.2 v) 

As said before, we regard Eq. (2.2') as a stochastic equation. The 
variable U ~ (U 0, U 1 . . . .  , U,), when thought of as stochastic will be 
denoted by the new symbol u ~ (u 0, u I . . . . .  G). When U is replaced by u, 
Eq. (2.2') results in a multidimensional Langevin equation of the same kind 
as that studied by Fox and Uhlenbeck. (21) Since they were able to build up 
the corresponding Fokker-Planck equation, we can use their result to solve 
our problem. Thus we find (Appendix B) that the Fokker-Planck equation 
to be associated with Eq. (2.2) is 

- ~ f  e2( , ,  ~'~, t L; ,,~2~, t2) = r . P ~ (  �9 �9 �9 ) (2 .15)  

where (we assume that ~o i = O) 

( ) ( ) r . = - ~ ,  042~ a.~2 ~ au? a4~ 

4- . . . .  n Un -- - -  n--lJ OU ~2) OU~ 2) \ n - I  
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Equation (2.15) is the bona fide Fokker-Planck equation to be asso- 
ciated with Eq. (2.2). Of course, this Fokker-Planck equation is only 
approximatively equivalent to Eq. (2.2). However, its accuracy increases as 
the parameter n increases. Equation (2.15) becomes completely equivalent 
to Eq. (2.2) for n ~ m. From a practical point of view, the continued 
fraction of Eq. (2.8) is really useful only in the case of fast convergence. 

It may happen, however, that the approximations suggested by the 
physical system under study lead us to a different kind of continued 
fraction, faster than the standard type of Eq. (2.8). An illuminating case is 
that where the thermal bath consists of two subsystems sequentially cou- 
pled with the variable of interest. Let us assume that the relaxation 
properties of the first subsystem, which depend on the interaction with the 
second one, are known. It is then possible to show that the standard Mori 
theory (11) is not suitable for exploiting the advantages of such an approxi- 
mation. A first example is discussed in Appendix C. A second example of 
the same type is that of a magnetic spin interacting with a fluctuating 
magnetic field, the fluctuations of which are driven by the molecular 
motion. The theory of Brownian motion can then afford useful information 
on the mathematical properties of the stochastic variable [~o(t) in the case of 
Eq. (1.1)1. 

We would like to stress that the approximation expressed by Eq. (2.2'") 
at first glance would seem to be equivalent to replacing the rigorous 
equation of motion given by Eq. (2.1) with the following one: 

d a ( t )  = i L r  ) (2.16) 

Lef t is an approximate Liouville operator, which on the basis set of the first 
n + 1 normalized variables of the standard Mori chain reads 

i L e f  t = 

i~o o A l 0 �9 �9 �9 0 0 

- A 1 ioo I A 2 " " �9 0 0 

0 - A 2 iw  2 �9 " �9 0 0 
. , . . . . . . . . . . . . . . . .  

0 0 0 " " " i w n -  1 An 

0 0 0 . . . .  An i %  - T .  

(2.17) 

However, even in the case when the truncation at nth order xs exact, Eq. 
(2.1) and Eq. (2.16) are not completely equivalent. In fact, even if Eq. (2.17) 
results in the same autocorrelation function for the variable a as Eq. (2.16), 
its thermodynamical equilibrium is not correctly reproduced because Lef f 
does not take into account the fluctuating force acting on the last variable 
of the truncated Mori chain. 
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Let us now consider the following equation of motion: 

duo 
d t  - ( 2 . 1 8 )  

This equation is based on the same central idea as that on which the 
approach of the next section is grounded. We mean the replacement of the 
rigorous Liouvillian L by the diffusion operator F,. It is reminiscent of 
the method followed by Mori and Fujisaka, ~22~ who used a generalized 
Fokker-Planck operator for driving the motion of the variable of interest. 
Equation (2,18) requires that an appropriate scalar product be defined. On 
intuitive ground one would be tempted to use the following definition: If 
gl(u) and gE(u) are two generic functions of the multidimensional stochastic 
variable u, then 

g~) ~-- f du g~(u)gl(u)wo(u ) (2.19) ( gl, 

where Wo(U ) is the equilibrium distribution. In Appendix E, however, we 
shall use a more general definition including that of Eq. (2.19). In so doing, 
we shall show that the Laplace transform of (u(t), u*) results in the same 
continued fraction expansion as the Laplace transform of (a(t), a*). As far 
as the equilibrium distribution is concerned, however, Eq. (2.18) shares the 
flaw of Eq. (2.16). Equations such as Eq. (2.18) can be trusted only when 
used for evaluating the correlation function (Uo(t), u~). In order to obtain a 
correct equilibrium distribution the corresponding Langevin (or Fokker- 
Planck) equations have to be applied. This important remark has to be kept 
in mind throughout the remaining part of this paper. 

3. EQUATION OF MOTION IN THE INTERACTION PICTURE AS 
STOCHASTIC PROCESS OF MULTIPLICATIVE KIND 

Let us assume that the physical system under study be divided into 
two subsystems, S and B, interacting with each other. Let S be the 
subsystem of interest and a the corresponding dynamical variable. We 
mean that the variable a ----- a(0) only depends on the S phase space. The 
equation of motion of a(t) can be written as follows: 

da(t) 
dt - i(Ls + LI + LB)a(t) (3.1) 

where L 1 is the Liouville operator concerning the interaction between S and 
B. Such a kind of partition of the Liouville operator L can also be founded 
on the standard Mori approach outlined in Section 2. We can call L s the 
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part of L spanned by the "state" fo and L a that spanned by all other 
"states" of the Mori chain. The interaction L l is then proportional to the 
parameter A v An approach based on assumptions concerning the modula- 
tion of this interaction from the remaining part of the Mori chain results in 
a new picture of the thermal bath. In this section we want to provide a 
theoretical approach to this new picture. 

In the interaction representation Eq. (3.1) can be written as follows: 

d u ( t )  
dt - i~l( t )u (  t) (3.2) 

where 

and 

~1 ( t) ~ e- i (Ls+ L,)tL1 e i(Ls+ L,)t (3.3) 

u ( t )  =- e -i(Ls + L,)t a ( t )  (3.4) 

To some extent, ~/(t), Eq. (3.3), is reminiscent of f ( t ) ,  Eq. (2.2). Both f ( t )  
and ~/(t) exhibit a deterministic dependence on the "irrelevant" part of the 
physical system under study. In Section 2 we remarked that when the 
"irrelevant" part involves a huge number of freedom degrees, it is conve- 
nient to replace the deterministic approach by a stochastic one. If this 
suggestion is followed, ~(t) has to be replaced by the stochastic variable 
w(t) and Eq. (3.2) has to be identified with Eq. (1.1). The stochastic vari- 
able ~0(t), in turn, in general obeys an equation of the same form as 
Eq. (2.2), 

d~o i~o(t) f j  - -  = - q%( t -  r )w(~)&'+f~(t)  (3.5) 
dt 

We assume that ~ ( z )  is given by a truncated continued fraction. Then, 
according to the theory of Section 2, we can replace Eq. (3.5) by 

dw _ Fa~0 (3.6) 
dt 

where F a is the multidimensional Fokker-Planck operator to be associated 
with the generalized Langevin equation itself. We have to keep in mind that 
when the thermal bath driving the motion of ~o(t) is assumed to be in its 
equilibrium state, Eq. (3.6) is equivalent to 

d F~w ~ Faw ~0F a (3.6') 

As a consequence, if ~(t) is replaced by w(t),  Eq. (3.1) becomes 

d a-~a = Co a ~ [ i ( L  s + o~) + Fa ]a ( t  ) (3.7) 
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In fact, when written in the interaction picture, Eq. (3.7) reads 

du _ iw( t)u( t) (3.2') 
dt 

which is the stochastic counterpart of Eq. (3.2) [0~(t) -- er~'~(0)]. 
Though the total "Liouville operator" i (L  s + ~) + Fu is not Hermitian, 

it is still possible to build up an expansion basis set of the same kind as that 
of the previous section (see Appendix D). The theory developed in Appen- 
dix D can be regarded as a generalization of that of Schneider (23~ who, in 
turn, extended the Mori theory. In fact, Schneider (23~ only dealt with 
pseudosymmetric systems, whereas the theory of Appendix D can be 
applied to operators of any mathematical type. Then, following the same 
approach as the corresponding one in Section 2, we can replace Eq. (3.7) 
with 

d u = ru(t )  + F(t)  (3.8) 

where 

l ! !  2x 1 0 �9 �9 �9 

F -- ~ hi A2 " " " (3.9) 
- 2X 2 h2 �9 . . 

The parameters h i and A i can be obtained by the prescriptions of Appendix 
D. The dimension n of the variable u is determined by the required degree 
of accuracy in evaluating, for instance, the correlation function (Uo(t), u~). 
However, the matrix F can be truncated without any need of replacing the 
remaining part of the chain with an additional damping. In fact, a damping 
contribution is already present in the parameters hi, which are complex 
numbers also containing a real part. 

This subtle characteristic of our approach requires some comments. 
Once the structure of the matrix F has been determined, the stochastic 
force F(t) has to be related to the dissipation part of the matrix F itself by a 
fluctuation-dissipation relation, which will afford a correct square average 
value for the variable of interest. Let us consider the case where the 
parameters h i are endowed with only the real part (see Appendix E). The 
fluctuation-dissipation relation of the Fox-Uhlenbeck theory (21) can then 
be written as follows (see also Appendix B): 

(F(t), F*) = 2A6(t) (3.10) 

where A is a diagonal matrix, the nonvanishing elements of which are given 
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by 

~i ~ (r)  ii ~ - ~ki (3.11) 

In the non-Gaussian case, the higher-order moments of F(t) cannot be 
expressed in terms of A. However, the equilibrium square average value of 
the variable of interest is independent of their actual values. ~24~ On the 
contrary, the correlation functions (U2on(t),u2o ~*) are significantly affected 
by any non-Gaussian contribution to the stochastic force. Our approach 
could provide a faithful description of such a non-Gaussian behavior as a 
result of further investigation on the physical properties of the system under 
study, whereas the "non-Gaussian" behavior of Kubo's stochastic oscillator 
(see Appendix A) is an artifact of the SLE theory. 

Failing information on higher moments of F(t), we assume that this 
stochastic force is Gaussian. Then, by using the same approach as that 
which led us to Eq. (2.15), we obtain 

O p2(uO) tl ; u(2),t2) = yaP2(u(1),tl ;u(2) t2 ) (3.12) 
Ot 2 ' 

where F. is defined by 

r u ~  - mr+l O-~r(2) r+l ~221 

" [ 3----~-u(2)+ qr2 3-----~2 ] (3.13) 
4" r_~ 0 "~r 0 Ur(2) r ~(U(2))2 

In the case where the "memory kernel" of Eq. (3.5) is endowed with a finite 
lifetime, the theory developed in the present section leads to a generaliza- 
tion of the SLE theory along the same lines as those of Ref. 5. Let us recall, 
furthermore, that Eq. (3.12) has been built up by making the usual 
Gaussian assumption on the stochastic variable ~0(t). We can then empha- 
size a further advantageous feature of our approach: The diffusion operator 
F, when constructed along the lines of Refs. 24 and 6 would enable us to 
avoid this assumption. 

It is important to stress that Eq. (3.8) leads to a generalized Langevin 
equation with a "memory kernel" the Laplace transform of which exhibits 
the generalized structure found in Appendix D. By following the lines of 
Ref. 5 (see Appendix F), we find that u 0 satisfies the following generalized 
Langevin equation: 

d fo tdsq~( t  f ( t )  (3.14) d---t u~ t)  = X~176 t)  - - s ) u ~  s)  + 
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where 

~(~) = 
A~ 

z - X 1 +  
Z - -  ~ 2  

293 

(3.15) 

However, Eq. (3.14) is not completely equivalent to the generalized Lange- 
vin equation derived by using the technique of Mori type of Appendix D, 
Eq. (D.38) with k = 0. In fact, as shown in Appendix F, the Laplace 
transform of f ( t )  can be expressed in terms of the Laplace transforms of the 
components of F(t) as follows: 

2h /(z)=&(z)+ 
Z - - X  1 + 

z - X2+ 
z - X 3 +  �9 �9 �9 

X ~(O)+P~(~) + A2 

z - X  2 + 
A~ 

A~ 
z - X 3 +  

z - X 4 + 

X 
^ 

u~(O) + r ~ ( : )  + A3 

z -%3 + 
A~ 

A~ 
Z - -  ~k 4 + 

z - X s +  

x (  . . . . . .  ) 

(3.16) 

It means that the fluctuating force f(t) also depends on the variables u i 
(i/> 1), which at t = 0 can be found far from their thermodynamical 
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equilibrium, whereas the generalized Langevin equation of the Mori theory, 
Eq. (2.2), and its generalized version of Appendix D as well, is derived in 
the presence of a thermal bath assumed to be in its equilibrium state. This 
is the reason why the present approach can be used to evaluate the 
spectroscopic effects of thermal bath excitations. (25) The problem of prepa- 
ration has recently been studied within the context of different theoretical 
approaches. (26'2v) A detailed comparison between the present method and 
those of Refs. 26, 27 could be the subject of a future stimulating investiga- 
tion. 

4. A COMPARISON BETWEEN THE SLE THEORY 
AND THE NEW APPROACH 

The generalized Mori theory of Appendix D shares the main features 
of the standard Mori approach described in Section 2. This theory consists 
in building up a suitable basis set for expanding a non-Hermitian dynami- 
cal operator ~0 such as that of Eq. (3.7). 

In this reference framework, when the "quantum-mechanical" nota- 
tion of Appendices D and E is used, ~0 can be written as follows: 

~0 = k [r~lr))kr(mr[-- k Ar+l{ll~lr)(mr+l]- ]g~'lr+l)(mr[} (4.1) 
r = 0  r = 0  

We can assume that L s = 0. Furthermore the stochastic variable ~(t) is 
assumed to be both Gaussian and Markoffian. As a consequence F e is 
replaced by 

F~ ~ 7 G + (4.2) 3~ 2 

As shown in Appendix E, Eq. (4.1) then becomes 

~0-- - ~ I&)( r - 1 ) y ( m r [  
r = 0  

-- A ~ (r + 1)l/2([rfi~)fmr+][- ]r~lr+l)fmr] } (4.3) 
r=O 

We can use Eo, Eq. (4.3), for evaluating the time evolution of ~o(t). The 
main difference between the SLE theory and the present approach is that 
this time evolution is now determined also by the interaction between c0 
and the part of interest itself. In the case under study the stochastic variable 
co has to be regarded as being an operator on the space spanned by the 
states ]mr) to be denoted by &. Its nonvanishing matrix elements are then 
given by (see Appendix E) 

- = (rhr+,l~3[mr) = (r + 1)'/:A (4.4) 
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It is straightforward to check that if we replace s by 
0o 

s ~ - ~ Imr)( r - l)'y(rfiA (4.3') 
r ~ O  

the corresponding time evolution of ~o as given by 

&3 _ s (4.5) 
dt 

completely satisfies the Gaussian requirements of Eqs. (A.2) provided that 
the moments of ~0(t) are defined by 

@ ( t i ) o ~ ( t 2 ) ' ' "  ) =-- (th0l~3(t,)~(t2) �9 " " Ira0) 

However, when the total Liouville operator of Eq. (4.3) is used, the time 
evolution of o~ is shown to exhibit significant deviations from the free decay 
behavior. Figure 1 shows the behavior of the correlation function C~(t) 

1.0 

0.9 

o  ooo 
O.2 

0.1 

0.0 

-0 ,1  

- 0 . 2  

0 5 10 15 20 

T:yt 
Fig. 1. Time evolution of the correlation functions Cuo(~- ) =--(uo('r), u~) (1, 2, 3) and C,o(-r) 

(~0~0(~-)) (A, B, C). The parameter ~- is related to the time t by ~" = yt. Values of the 
parameter A:0 .1y  (1, A), 0.37 (2, B), 0.57 (3, C). All correlation functions are evaluated by 
using the present approach. The curves 1, 2, and 3 coincide with the corresponding ones 
obtained by using the SLE theory, Eq. (A.6). The small open circles denote the free decay of 
the correlation function C, o0"). 
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= (~ow(t)> for increasing values of A. The agreement with the SLE theory is 
fairly good for small values of the "memory strength" parameter g = 22x/7. 
On the contrary, when g ~ l ,  the correlation function C,o(t) can also have 
negative values and slowly attains a steady vanishing value for t---> oo. Of 
course, the correlation function Cuo(t ) ~ (Uo(t), uJ) coincides with that given 
by the SLE theory. 

As far as the equilibrium distribution of u 0 is concerned we can have 
recourse to Eq. (3.13). By using again the diffusion operator of Eq. (4.2) 
and the explicit expressions for the parameters A; and h~ given in Appendix 
E, we obtain 

0 P2(u(l), tl ; u(2)t2 ) = _ ~ (r + 1 ) 1 / 2 A ( ~  U(2) ~ U(2))P2( " " " ) 
o3t2 ~o~U r ) r + l  ~U(2 ) r=O r + l  

+ 
r=l [ ~u~ (2) 

e2(.. .) 

(4.6) 

It is straightforward to check that the corresponding equilibrium distribu- 
tion, w0(u), is 

w~ ~I [ qe-(uT/q2) (2~r) 1/2 (4.7) 

which results in a Gaussian distribution for the variable of interest u0 when 
the other variables are wiped out. As a consequence, the higher-order 
correlation functions 

C~0") (t) ~ (u02"(t), u02"*) (4.8) 

are shown to attain the correct value Cuo(~)= ( 2 n -  1)!!, as required by 
the Gaussian assumption on the stochastic force F(t) done in the previous 
section. To obtain the simple equilibrium distribution of Eq. (4.7) we had to 
assume all the parameters qr of Eq. (3.13) to have the common value q. 

The basic aspects of our approach can be summarized as follows. The 
first step consists in replacing the true many-body thermal bath with a 
"reduced" equivalent one. This aspect is also shared by Adelman's ap- 
proach, which has recently been proven successful for studying a wide class 
of liquid state as well as solid state phenomena3 28) In the present case the 
"reduced" thermal bath has to be proven to result in the same properties of 
the stochastic variable w(t) as the true one. Appendix D teaches us how to 
do that without introducing any additional arbitrary parameter. The cou- 
pling A i and the dampings Yi are indeed expressed in terms of the parame- 
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ters A and ),, respectively, defining the correlation function of Eq. (1.2). The 
actual size of the chain of fictitious variables also depends on the statistical 
nature of the stochastic variable ~0(t). For example, if ~0(t) were a two-state 
Poisson stochastic variable, the equivalent "reduced" thermal bath would 
involve a fictitious variable alone. Any fictitious variable is affected by a 
damping, 7i. Each damping Yi, in turn, can be traced back to the presence 
of an additive stochastic force f(t)  satisfying the fluctuation-dissipation 
relation (f(t), f*) = 2q27ir(t) which results in a correct equilibrium distri- 
bution of the corresponding fictitious variable. This important requirement 
can be satisfied without affecting the unperturbed properties of the 
fluctuating frequency ~o(t). The Fokker-Planck equation of Eq. (4.6) then 
shows that also the variable of interest attains a correct thermodynamical 
equilibrium. After replacing the true thermal bath with the "reduced" one, 
complete information on the dynamics of our system can straightforwardly 
be obtained, including the back-reaction of the variable of interest on the 
thermal bath itself. The actual time behavior of the stochastic variable ~0(t) 
can be strongly affected by the couplings A i. 

5. C O N C L U D I N G  REMARKS 

The basic idea of our approach consists in replacing a "multiplicative" 
relaxation process by an equivalent one of additive nature. In a recent 
paper, (27) Tokuyama transformed a general multiplicative stochastic pro- 
cess into an additive one. The corresponding Fokker-Planck equation was 
shown to contain a nonlinear drift term. Since, in general, a nonlinear drift 
term can be traced back to a "memory kernel, ''(22) the present approach 
could be connected with that by Tokuyama. It should be stressed, however, 
that Tokuyama did not explicitly discuss the problem which has been the 
major topic under discussion in the present paper. 

An interesting attempt of correcting the main flaw of the SLE theory 
has also been made by Stillman and Freed. (29) They applied rigorous 
constraint of detailed balance to the reversible drift terms in the Fokker- 
Planck equation plus simple modeling assumptions. They did not discuss 
the case of Kubo's stochastic oscillator. However, we think that their 
approach when applied to this problem will result in the same type of 
structure as that found in the previous section. 

We believe that the results obtained in this paper can also be useful in 
the field of computer simulation of generalized Brownian motion. In such a 
stimulating field of research increasing interest is being devoted to the 
computer simulation of stochastic equations of motion. (3~ In the non- 
Markoffian case the theory illustrated in Section 2 is a quite useful tool, (30 
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provided that the continued fraction giving the "memory kernel" is not so 
slowly convergent as to result in a multidimensional Langevin equation of 
an enormous size. In some cases, unfortunately, as shown by Balucani et 
al., (331 a truncation of Tokuyama-Mor i  kind has to be used for obtaining a 
good agreement with the "experimental" results. By using the theory 
developed in the present paper it is an easy matter to find the generalized 
continued fraction expansion which corresponds to the mathematical 
model used in Ref. 33. If we assume that the nth-order "state" of the 
standard Mori chain "feels" the remaining part of this chain acting as a 
"multiplicative" stochastic process, it is straightforward to show that the 
Laplace transform of qo(t), Eq. (2.2), can be written as follows: 

q~(z) -- A~ (5.1) 

z - i~01 + 
z - io~ 2 + 

where 

+ 
z - -  i~0, + q~n(z) 

A 2 
r . ( z )  = (5.2) 

2A 2 
z + -/ 3A 2 

z + 2 7 +  
z + 3 7 +  

The SLE theory would afford the suggestion of applying the new approach 
of Refs. 30-32 to the following set of differential equations: 

duo 
dt - A~uo( t) 

duz 
dt - A'u~ + A2u2(t) 

dun 
dt 

- A u._,(t) +,o(t)un(t) 

= - v '~  + L ( 0  

(5.3) 
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where f~o(t) can be assumed to be a Gaussian white noise. However, as 
shown in Appendix A, the higher-order correlation functions C~(0 ~) (t), Eq. 
(4.8), would not be correctly reproduced. 

The interesting suggestion of the present paper is that of using the 
following set of differential equations: 

duo 
dt - Alu~ t) 

du. 

at - + a . . ( 0  

dU,+l _ ~u,( t )  +~/2Au,+2(t ) (5.4) 
dt 

d b l  n + 2 _ _  

dt yu,+ 2 --V~Au,+1(t) + f 3 A u , +  3 + f , ( t )  

dun+3 
dt - 2TUn+3 --~-Aun+2(t) +v/4AUn+4 + f2(t) 

�9 , 0 

where the fr(t) are Gaussian stochastic functions satisfying 

(f~(t), f* ) = 2rq,8(t) (5.5) 

We hope to assess in a future investigation whether the basic idea of this 
paper can be successfully applied to the computer simulation of nonlinear 
nonequilibrium statistical processes. (32) 
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APPENDIX A 

Let us consider the stochastic process defined by 

du -~  = i~o( t)u( t) (A.1) 

where ~o(t) is a stochastic variable of Gaussian kind defined by its moments 
as follows: 

(~0(t,)) = 0 (A.2) 

(~o(tl)~o(t2)) = A2e -~(',-'2) (t, /> t2) (A.2') 

( ~o( t,)to( t2)~o( t3) ) = 0 ( t, >t t 2 >~ t3) (A.2") 

(w(t,)w(t2)w(t3)~o(t4)) = A4( e-V(t'-'2)e -Y03-,4) 

+ e - 7 0 1 -  t3) e - v ( t 2 -  t4) 

+ e - V ( q - t 4 ) e - ' / ( t 2 - t 3 ) )  ( t  I >/ t 2/> t 3 >~ t4) 

(1.2"') 

and so on. 
The basic idea of Kubo's theory is as follows. (34'35) Equation (A. 1) is 

integrated to 

u(t) = exp{ ifjto(t])dtl)U(O ) (1.3) 

When the initial condition u(0) is not a random one, the correlation 
function (u(t)u(O)) is proportional to the stochastic average of the expo- 
nential of Eq. (A.3). If the latter one, in turn, is developed in cumulants, we 
obtain 

(u ( t )u (O)) / (u (O)u(O))=exp(  m=l --~.v 3 o ~  (i)m ( ' t . . .  fo~((~o(t]).. .  ~o(t,)))} 

(A.4) 

When Eqs. (A.2) are satisfied the only surviving cumulant is the following: 

( (r l )w( t2 ) )  ) = A2e - , ( t , -  ,z) (A .5 )  

Then, from Eq. (A.4) we obtain 

(u(t)u(O))/(u(O)u(O)) = exp[-(A217)(e  - ' t -  1+ "~t)l (A.6) 

Since the equation of motion for u n (n > 0), 

d u" = nioo(t)un(t) (A.7) 
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can be derived from Eq. (A.1) by replacing co(t) with nco(t), the kind of 
approach which led us to Eq. (A.6) when applied to Eq. (A.7) results in 

(un( t )u ' (O) ) / (un(O)u ' (O))  = e x p [ - ( n 2 A 2 / y ) ( e  - v t -  l +  yt)] (A.8) 

The physical consequences of Eq. (A.7) are quite disappointing. When 
t--> ~ ,  (u ' ( t )u ' (O))  vanish also for even values of n. In the case where u(t) 
was the last variable of a standard Mori chain such as that resulting in the 
set of differential equations of Eq. (5.6), this undesired feature would 
spread along the chain and would affect even the variable of interest. 

APPENDIX B 

Let us define the variable of interest U as follows: 

Ui 
U=-  

where 

(8.1) 

where 

i~  ~-- (iLU, U*)-  (U, U*) - ]  (B.4) 

,l,(t) - (v(t), F*). (u, u*) - '  (8.5) 

F(t) -- e'QiLQiLU, F ------ F(0) (B.6) 

We remark that, since the variables U, are orthonormal, 

Q =  l - P =  ~-I Q, (B.7) 
r = 0  

where Q,. ~ 1 - P, and P,g - (g, U*)U,. As a consequence, the "random" 
force F(t) appears to be endowed with the following form: 

F(t) = Col[ 0 . . . . .  e iQLtiQLU, ] (B.8) 

U~ - - f / ( f ,  f* )-~/2 (B.2) 

and the f are defined by Eq. (2.12). By following the standard approach of 
Ref. 10, we obtain 

d u ( t )  = ia( t )  " U(t) - fot~(t  - s) " U(s) + F(t ) (8.3) 
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We also point out that the orthonormal nature of the variables Ur is 
expressed by the following matrix equation: 

(U, V*) = I (B.9) 

where I is the identity operator. Then, from Eqs. (B.8), (8.9), and (8.5), we 
obtain 

�9 (t) = (B.10) 

�9 " "  q .iO 

where 

~n(t) = (Un+l(t) ,  U*+I ) = ( e i Q L t i Q L U , , ( Q i L U , )  *) (B.10') 

By using the definitions of Eqs. (2.12)-(2.14') and exploiting the H ermitian 
property of the projection operators Pr, we obtain 

i (LUj ,  Uj+I) = Aj+ l (B.11) 

i(LU)+,, Uj) = -A j+ ,  (B.11') 

From Eqs. (B.2) and (B.10') we also obtain that 

~b,( t) = r t) (8.12) 

We recall that ~ ( t )  has been defined by Eq. (2.9). If we assume that 

q0,(t) = 23,,•(t) (B.13) 

we have 

q~n(z) = V, (B.14) 

which coincides with Eq. (2.2'"). Then, from Eq. (8.3) by using Eqs. 
(8.12)-(B.14) we obtain Eq. (2.2'). 

We can now remark that Eq. (2.2') belongs to the family of the 
multidimensional Langevin equations studied by Fox and Uhlenbeck. <21) 
The result of this research has been reviewed by Fox. <3) The stochastic 
force F(t), Eq. (2.2'), has been assumed to be a Gaussian stochastic force 
with the stochastic properties 

(F i ( t ) )  = O, (F i ( t )F j ( s ) )  = 2QijS(t  - s) (B.15) 

We recall that the symbol ( �9 �9 �9 ) denotes a stochastic averaging. O) In Ref. 
3 it is shown that a multidimensional Langevin equation such as Eq. (2.2') 
has to satisfy a fluctuation-dissipation theorem expressed by the following 
equation [Eq. (I.2.16) of Ref. 3] 

FE -~ + E-~F t = - 2 Q  (B.16) 
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where the matrix E is defined as follows: 

(E-')/j--= { u,., uj * } (B.17) 

and ( . . -  } denotes (3) an average on the equilibrium distribution of the 
stochastic variables u;. If we identify {u~, uj*) with (U~, Uj*), by using Eq. 
(B.9) we have 

E -1  = ( U , U * )  =-- I (B.18) 

As a consequence, Eq. (2.2 v) completely agrees with Eq. (B. 16). 
Since our multidimensional Langevin equation satisfies the fluc- 

tuation-dissipation theorem of the theory developed by Fox and Uhlen- 
beck, (2t) we can associate it with the Fokker-Planck equation found by 
them themselves [Eq. (I.2.40) of Ref. 3]. The normalized variables used in 
this appendix can be replaced by the usual ones simply by substituting 
uJqi for u~. Equation (2.15) thus is arrived at. 

APPENDIX C 

In this appendix we shall study a simple model of relaxation process, 
where the part of interest is sequentially coupled with two dissipation 
systems. A simple solution will be obtained by replacing a "reduced" model 
for the "complex" one. The "reduced" model will be shown to exhibit the 
same kind of structure as the Mori chain of variables of Section 2. 
However, the parameters corresponding to the real frequencies % of Eqs. 
(2.8) and (2.17) will be shown to contain also an imaginary part. 

First, consider the equation of motion 

d i e ( t ) )  = -i%le(t)) (]e(0)) = l e ) , ( e l e )  = 1) (C.1) 

where % is the quantum-mechanical Hamiltonian defined by 

% ~ [e>ee<e[ + 2[m>cm<m[ + Z {[e}vm(m[ + [m>vm(e[) ( C . l ' )  
m m 

This kind of model Hamiltonian has widely been applied to the field of 
molecular radiationless decays. For a deeper understanding, the interested 
reader can consult several excellent reviews. (36) A reason for dealing here 
with this model has also to be seen in our desire to shed further light on the 
physical meaning of the Markoffian assumption of Section 2. Let us 
consider the case when the m manifold is so dense as to result in the same 
effects as a continuum set of states ([e)}. This is just what is called 
Friedrichs model, (37) a simple scheme widely applied for studying nonequi- 
librium processes such as spontaneous emission. (38'39) 
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Equation (C.1) is of the same kind as Eq. (2.1). We can thus apply the 
standard Mori approach to the "variable" le(t)>. The scalar product 
between the two variables f and g used in Section 2 has to be replaced by 
the usual scalar product ( g  If)  between the two quantum-mechanical 
states If)  and I g>. We have, for example, 

Ift) = f & [e>@l Vie> (C.2) 

qfft)=- (fllfl(t)>= f_+ ~ del(elVl~>[Ze -ia (C.3) 

In the case where the coupling V is assumed to have the following 
Lorentzian form: 

I<el vle>12- A/{(e - ,e) 2 "4- , y2}  (C.4) 
we obtain 

where 

~(z) = A2/(z + i% + 7) (c.5) 

= (C.6) 
Therefore the infinite continued fraction expansion of Eq. (2.8) is shown to 
result in a truncated form, Eq. (C.5), which, in the case of the Lorentzian 
interaction of Eq. (C.4), is an exact expression for the Laplace transform of 
the "memory kernel" qfft). 

Let us take into account the case where a second dissipation manifold 
is present. We have thus the following Hamiltonian: 

% ~ ]e>ee<e I + ~lrn>em(ml+ ~ {le>vm(ml + Im>vm(el} 
m m 

+ ~ [n>G(nl+ ~ {[n>V,m(m [ + ]m>Vnm(n[} (C.7) 
n n m  

This model Hamiltonian has widely been applied for studying, for instance, 
the problem of vibrational relaxation (n~ and that of multiphoton molecular 
dissociation. (g~) We shall assume that interference effects among the states 
[m> can be neglected. The Markoffian assumption on the n-m interaction 
is avoided: We assume that any state Ira> is coupled with the second 
dissipation manifold by an interaction of the same form as that of Eq. 
(C.4). The width of this Lorentzian n-m coupling is denoted by u By 
using the results obtained in the first part of this section, we can replace Eq. 
(C.7) with the following non-Hermitian Hamiltonian: 

% _~ le>G<e[ + ~ [m)em<ml + ~ Id(rn)>(% - iy2)<d(m)[ 
WI 11~ 

+ ~ (le>(m] + Im><el)v,,+ ~, (Im>(d(m)[ + ]d(m)><ml)v 2 (C.8) 
m m 
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This is equivalent to writing the memory function cp(t) as follows: 

~(  t) = Z v2 (mle-i~c"' lm>e -i~.t 
m 

= ~m V2mI((~rl ] m)) 2e-iE",t-[ - ((,272]m~)2e-iE~J]e -i'mt (C.9) 

where I~rl~, ]~r2~ and E~, E~2 are the eigenstates and the eigenvalues, 
respectively, of the Hamiltonian %" defined by (0v ) (c.10) 

v 2 - iT 2 

By assuming again that the e - m  coupling is of Lorentzian kind with width 
yp ~(t) can be written as follows (c M = %; (~r r ] M )  = (or, I m), r = 1, 2): 

"'2~ I M~)2e -iE€ + ((07"21M~)2e-iE~z t] (C.11) = 

The same "memory kernel" as that of Eq. (C.11) is obtained by using the 
following effective Hamiltonian (eN = eM): 

%'----]e},e(e ] -I- ]M}( ,  M - i v O ( M  ] + I N } ( ,  N - i[Vl + Y21)(NI 

+ v~(le)(M] + IM)(e]) + v 2 ( I M ) ( N ]  + IN)(M])  (C.12) 

The standard Mori theory cannot account for this kind of chain. Infinite 
"virtual" states are thus required to simulate the presence of the damping yj 
on the intermediate state IM>. 

APPENDIX D 

We shall study a general equation of motion of the following kind: 

d A ( t )  = s  (D.1) 

where A can represent either a classical variable or a quantum-m~echanical 
state. The latter case concerns the field of investigation alluded to in 
Appendix C, to which the result of the present study can thus be extended. 
The corresponding dynamical operator s is defined as follows: 

---- - i% (D.I') 

where % can be an effective Hamiltonian of non-Hermitian nature such as 
those of Appendix C. 

In the classical case 

= iL (D.I") 
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where L can be the "effective Liouville" operator built up in Section 3. We 
shall use a "quantum-mechanical" formalism even for dealing with the 
classical case. Thus, the scalar product between two classical variables a 
and fl, denoted in Section 2 by (a, fl*), will be given the new symbol 

The basic idea of the following theoretical development, the aim of 
which is to extend the Mori approach ('~ to the non-Hermitian case, 
consists in using a biorthogonal set of "states" rather than the standard 
basis set of Section 2. We shall build up a chain of "states," the first "state" 
of that chain being 

I/o) = IA> (D.2) 
Then we shall define the usual zero-order projection operator 

Po -- [ fo ) ( fo l /  ( fo I fo) (0.3) 

The "state" If,) is defined by 

If,) ~ e, Ifo> (D.4) 

where 

e, =(1 - eo)eo (D.4') 

We define, together with the state If,), the corresponding left "state" (.~ I, 

( J ~ l -  (folEo( 1 - Po) (D.5) 

In the Hermitian case 

<~1 = - ( f , I  (D.6) 
In general, (~[  is completely different from the usual dual state (f,[ 
associated with ]f,y. The projection operator PI will be defined as follows: 

P ,  ~ If,)<~ If,)-'(~l (D.7) 

The idempotent property is conserved, whereas the Hermitian one is lost. 
In general, in fact, P, 4 = Pl*. The (n + 1)th-order "state" is defined by 

]fk+l) = Ek+llfD (0.8) 

where 

and 

e k + , ~ ( 1  -- Pk)ek (D.9) 

The corresponding left state is given by 

  leo(1 - P o )  �9 �9 �9 ( 1  - 

( D . 1 0 )  

(D.11) 
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set of 

and 

so that 

We can also write 

where 

d lA( t ) )  = ~klfi(t)) 

[fk(t)) = PkIA) + (1 -- Pk) lA( t ) )  = ~ ( t ) l A )  + [f/~(t)) (D.14) 

'~ k( t ) ~ ( ffk l f~ ( t ) ) / ( .~ l fk 

If/~(t)) =--(1 - Pk )lfi(@ 
By using Eqs. (D.16), (D.13'), and (D.14), we obtain 

d if/~(t)) = (1 - Pk)~k[J/~(t)) + ~k(t)lf~+,) 

which results in 

l/~(t)) = fot dSdg~(s)lfk+l(t- s)) 

Equation (D.14) can thus be written as follows: 

I f i ( t ) )  -- qsk(t)[fi) + fotdsegk(s)lf~+i(t - s)) 

We focus now our attention on 

satisfying 

where 

~k ~ ~k-l(  1 -- Pk-l)  (~0 ------- s (D.21) 

By following the same approach as that which led us to Eq. (D.14'), we 

d ()~(t)  I = ( ~ ( t ) l  ~k 

(D.13') 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

(D.14') 

(D.19) 

(D.20) 

We have thus defined a biorthogonal basis set of vectors, i.e., a 
vectors satisfying the following orthogonality condition: 

( )~' [fk ) =6kk, (D.12) 

The time evolution of the state ]fi)  as resulting from the interaction with 
the space spanned by ]f~+l), ]fi+2) and so on, is 

]fk(t)) _= e~t~k]fk ) (D.13) 
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obtain 

where 

Grigolini 

( fk(t))  = 4k( t ) ( f~  t + s  ds4k(S) ( fk+, ( t  -- S)t (D.22) 

4k( t) =-- ( f k (  t) Ifk) " ( fk  ]fk) -1 (D.23) 

By using the biorthogonal properties of our basis set, after some algebra we 
obtain 

and 

4k(t  ) = ~k(t) (D.24) 

()~(t)  Ifx+, ) = (a~le~'lf~+~> = (~leek'lfk+~> (D.25) 

From Eq. (D.13) we have 

d -~ Ifk( t))  = ek[fk( t)) = eGtffklfk) (D.26) 

which by applying the property 1 = (1 - Pk) + Pk results in 

d --dt I fk(t))  = *kkee~qfk) + eekqfk+l) (D.27) 

where 

By applying again the resolution of unity to the 
right-hand side of Eq. (D.27), we have 

d Ifk(t))  = Xk lfk(t) > + IfkY(f~lee~'{fk + Ilk>-' 

+ (1 - Pk)ee~'lfk+l) (D.29) 

Equation (2.25) allows us to replace Eq. (2.29) by 

d 
-~ I fk ( t ) )  = Xklfk(t))  + I f k ) ( ~ ( t )  Ifg+l)<.~ I fg ) - '  + (1 -- Pk)ee~lfk+1) 

Inserting Eq. (D.22) for (j~(t)l into Eq. (D.30), we obtain 

d Ifk(t)) = Xk[fk(t)) -- Ifk) s  ds e~k + l(t - S ) ~ k ( S ) A 2 k  + 1 

+ (1 - ek)ee~'lfk+~) 
where 

(D.28) 
second term on the 

(D.30) 

(D.31) 

A 2  - ! k+, = - (.~+1 tfk+])(J~ Ilk ) (D.32) 
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By multiplying Eq. (2.31) on the left by ()~l, we obtain 

2 t d dpk(t)=}`kdPk(t)-- Ak+ls dsdPk(S)~k+l(t-- s ) ( D . 3 3 )  

By Laplace transforming Eq. (D.33), we have 
A 2 ^ 

<bk(z ) = dgk(O)/[  z - }̀ k + A~ + l~k + ](Z)] (0.34) 

As a consequence, we arrive at the following continued fraction: 

89 o( Z ) = 1 

z - )to + 

z - } ` l  + 

z - }'2 + 

A2_ l 

z - x . _ ,  + a fi,~ 

(D .35)  

which is more general than that by Mori, Eq. (2.8), since the expansion 
parameters }̀ i and Ai are now complex numbers containing, in general, both 
a real and an imaginary part. 

By Laplace-transforming Eq. (D.14'), we get 

Ij~(z)> = Ifk>~)k(Z)+ lJ~+,(z)>d)~(z) (D.36) 
Let us replace Eq. (2.34) into Eq. (2.36). We then obtain 

If~(z)>=[If~>+l~+,(z)>](z-}`k + ~,+,~,~+,(z))-' (D.37) 
which is the Laplace transform of the following equation: 

-~  If~(t)> = }`k l fk( t )> - d s l f k ( s ) > q ) k ( t -  s)  + I f k+l ( t )>  (D.38) 

where 
~ ( t )  = A~+ l~g+ ,(t) (D.39) 

In the Hermitian case, for k = 0 the previous equation coincides with the 
generalized Langevin equation of Eq. (2.2). 

As in Appendix B, it is useful to normalize the states [fro>. In the 
present case, we have to define a biorthonormal basis set of "states." They 
are defined as follows: 

I m> -----Ifm)/(.~ I fro> 1/2 (D.40) 

- < L I / < L  IL> (D.40') 
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As in Appendix B, it is then straightforward to show that 

(m"~l lE0[m) = iAm+ 1 

(r~le01m + 1) -- iA,,+1 

(r~l~0lm> =Am 

(D.41) 

(D.41') 

(D.41") 

which are the only nonvanishing matrix elements of t0. to can also be given 
in the following equivalent form: 

( m ~ l  ] ~ 0 ]m) = A m +, (D.42) 

(r~lE0lm + 1) = -Am+ t (D.42') 

(rh[ E0[m) = Am (D.42") 

which leads to Eq. (4.1). 

APPENDIX E 

In the present appendix we shall show that Eqs. (2.18) and (2.2') lead 
to the same continued fraction for the variable of interest. In other words, 
we shall show that 

(u0(t), u~) = (~0(0, ~ )  (E.1) 

In order to obtain this result we shall apply the generalized Mori theory of 
Appendix D. 

First of all, we shall define a suitable zero-order basis set. By using the 
Hermite polynomials Hen(x), (42~ we build the following "state": 

pro(X) ~ e-X2/2 Hem( x ) / Rm (E.2) 

where 

R,, ~ [  m! (2~r) 1/2] 1/2 (E.3) 

For simplicity, we assumed q,, Eq. (2.15'), to be equal to 1. The "states" 
]Pro) are an orthonormalized basis set provided that the scalar product 
(P,~ [Pro) is defined as follows(43) : 

( P,, [Prn) = y_~- ~ dx fw(x)p, ,(x)pm(x) (E.4) 

where 

fw(X) =-- e x2/2 (E.5) 

We shall use the following important properties (43) : 

d IPn) = - ( n  + 1)1/21p.+1) (E.6) 
dx 

Xlp, n ~ = (m)l/2[pm_]) "4- (m + 1)l/2lpm+,) (E.7) 
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Our basis set will then be defined by the following kind of direct products: 

[ n o n l n 2  . . . > =~ I p . o ( U o ) > l p . , ( U l ) > l p . 2 ( u 2 ) >  . . . (g.8) 

Let us take into account the case where 

F - - - -A,  Ou ~ , - - ~ u l u 0  + 7 1 - ~ u l  u, + ~u----7 (E.9) 

The zero-order state of our generalized chain is defined as follows: 

[fo> -= uo[00> (E.10) 

By applying Eq. (E.7) we can also write 

Ifo> = I 1 O> (E.1 I) 

By using Eqs. (E.6) and (E.7), If1>, Eq. (D.4), can be written as follows: 

If1) ----" (1 - Po)r./10> = - A I l o  1) (E.12) 

Equation (E.12) results in the same continued fraction (truncated at first 
order) as Eq. (2.2'). In fact 

x, = (~lr . l f~) .  (~  l fl> - 1 =  -71  (E.13) 

The extension of this demonstration to the nth order is straightforward. For 
example, in the case where 

u -  + 

(E.14) 

we have 

If1> = -A1 ]0105 (E.15) 

In fact, the contribution of the first term on the right-hand side of Eq. 
(E.14) is the same as the corresponding one of the previous case, whereas 
the contribution of the second term, when applied to ]0 0 05, vanishes. It is 
also straightforward to show that 

~-~u0 u l -  -~uU0 1010) = - I 1 0 0 >  = -If0> (E.16) 

As a consequence, this contribution vanishes when the projection operator 
1 - Po is applied. We have thus 

I f 2 )  = A1A2100 l> (E.17) 

In general 

Ifj) = ( -  I)JA1A2 ~  Ajl0(0),0(1) . . . .  , l ( j )  . . . .  > (E.18) 
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It is then evident that (Uo(t), uS) results in the same continued fraction 
expansion as (Uo(t), U~). This result can also be regarded as a further 
check of the multidimensional Fokker-Planck equation of Section 2, Eq. 
(2.15'). 

In the case where the effective operator under discussion is given by 
that of Eq. (3.7) and Fe is that of Eq. (4.2), we can define If0) as follows: 

Ifo) :-- alpo(W)) (E.19) 

In general the scalar product between two states I F ) =  blqt(oO) and 
I G)  = c I qz(tO)), where q l(w) and q2(w) are functions of the space spanned 
by the Herrnite polynomials, is given by 

( a  I f )  =(b,c*)(q, l q2) (E.20) 

where (b, c*) is defined according to the nature of the part of interest of our 
physical system and (q l lq2)  has to be derived by the definition of Eq. 
(E.4). 

Then, from the generalized Mori theory of Appendix D we have 

if , )  = (1 - eo)(iw + 
= (1 - Po)iawlpo(o~))= iaipl(~o)) (E.21) 

In order to obtain Eq. (E.21) we used Eq. (E.7). Furthermore, we took into 
account the fact that I Po(O~)) is the equilibrium eigenstate of F~, [Fo~ I po(o~)) 
= 0]. In general, by using Eq. (E.7) and the property (1 - Pn-l) lPn-1) = 0 
we have 

IL> = i"a(n!)l/2lp.(w)) (E.22) 

As a consequence (recall the definitions of A~'s and X;'s given in Appendix 
D) 

A2 n = nA 2 (E.23) 

~, = - nv (E.24) 

It is encouraging to remark that the continued fraction resulting from Eqs. 
(E.23) and (E.24) is the same as that provided by the SLE theory. (1) 

In the present appendix we have used the "quantum-mechanical" 
formalism of the previous one. When translated into the "classical" nota- 
tions of Section 2, the autocorrelation function of the variable of interest 
reads [we are now dealing again with the simple case of Eq. (2.18)] 

(Uo( t),u~) =-- f duu~uo( t)Wo(U ) du= f duuJ exp(I'.t)Uo e x p ( -  F.t)Wo(U ) 

= ( du u~' exp(F.t)UoWo(U ) (E.25) 
, 1  
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where Wo(U ) is the equilibrium distribution of the multidimensional variable 
u. We can remark, in fact, that the general expression for Ifo) is 

l f o )  ---- u o [ O 0 0  �9 �9 �9 ) ( E . I O ' )  

Therefore, 

(fo Ifo(t)) = ( 0 0 0  �9 �9 �9 luJ exp(F.t)uo]O00 �9 �9 �9 ) 

= f e  u~/2e'd/2. �9 �9 e -~~  u8 exp(F,t)UoWo(U ) du 

= f u 8 Uo(t) Wo(U ) du (E.26) 

For t --/: 0 Uo(t ), Eq. (E.25), has to be regarded as being an operator acting 
even on Wo(U ). For t = 0 the definition of scalar product on which Eq. 
(E.25) is based is the same as that of Eq. (2.19). 

This scalar product, of course, has been defined in such a way as to 
agree with the stochastic approach, (35) which provides [t = t 2 - t~ /> 0] 

( u~) uo( t) ) :_ f au , ~) du (2) P2(u(1), tl ; u(2), t2)U~oO *U~o2~Wo(U) (E.27) 

By recalling that (35) 

e2(u (O, tl; U (2) , t2) = exp(Fu,~,t)6 (u (O - u ( 2 ) )  (E.28) 

we obtain 

(UoUo(,)) = f du (2) u~02)[ exp(D.,~,t)U~o 2)* ] Wo(U (2)) 

f du u 8 exp(r.t)UoWo(U ) (E.29) 

Equation (E.25) agrees with the previous one. D u is the adjoint to F. 
defined by the scalar product of Eq. (2.19) with Wo(U ) = 1. 

APPENDIX F 

By Laplace transforming Eq. (3.8) we obtain 

Zao(Z ) - Uo(0 ) = Xoao(Z ) + A,~l(Z) + Po(z) (F.1) 

za , ( z )  - u,(O) = x , a i ( z )  - ~,ao(Z) + A2a2(z) + Pl(~) (V.2) 

~a2(z)  - u~(0) = X:a2(z) - A~a,(~)  + a3a~(~) + P2(z)  (v .3 )  
. , . 

If this chain could be truncated at the second order (A 2 = 0), from Eq. (F.2) 



314 Grigolini 

we would obtain 

ai(z) = (z - X,)- ' [  u,(O) - A,~o(Z) + F,(z)] 

which, when replaced in Eq. (F.1), results in 

6~ A 
zu~ - u~ = h~176 (z - X,) a~ + F~ + 

(F.4) 

[ ~ , ( z )  + ~ , ( o ) ]  

(z - X 0 A1 

Equation (F.5) is the Laplace transform of the following 
[,angevin equation: 

d fot~(t d s + f ( t )  U o ( t )  = X o U o ( t )  - - , ) ,o(S) 

where 

~(z )  - z - Xl 

~ [ & ( ~ )  + u,(z~] 
f (z) = Fo(z ) + --~ Z A-~ A, 

(F.5) 

generalized 

(F.6) 

(F.7) 

(F.8) 

If the truncation is made at the third order (A 3 = 0), from Eq. (F.3) we 
have 

a~(z )  = (z  - h ) - i [  u~(O) - A ~ , ( z )  + &(~)] 
When replaced into Eq. (F.2), it results in 

Zb~l(g ) -- Ul(0  ) = ~kl/~l(Z ) -- AI~0(Z ) 

(F.9) 

+ (z - x2)-'a2[a2(o) + P2(z) - a~a,(z)]  + P,(z)  

(Rio) 
from which 

a l ( z ) =  z - X l + ~  

x Ul(0) - A,ao(Z) + F,(z)  + ~ [u2(0) + r~(z)]  (F .10  

This equation, in turn, provides for the generalized Langevin equation of 
Eq. (F.6) the '"memory kernel" given by the inverse Laplace transform of 

~o(Z) = (F.12) 
z - X, + A~/(z -- X:) 
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and the following Laplace transform of the stochastic force: 

A1 
f(z  = P0(z) + 

z - x ,  + A l(z - X2) 

• /~l(z) + ul(0 ) + ~ [u2(0 ) + F2(z)] (F.13) 

By applying the same method to the higher-order cases, it is straightforward 
to show that the exact expressions for ~(z) and f(z) are given by Eqs. (3.15) 
and (3.16), respectively. 
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